首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3806篇
  免费   403篇
  国内免费   252篇
  2023年   71篇
  2022年   60篇
  2021年   104篇
  2020年   155篇
  2019年   153篇
  2018年   144篇
  2017年   148篇
  2016年   158篇
  2015年   162篇
  2014年   174篇
  2013年   400篇
  2012年   174篇
  2011年   157篇
  2010年   132篇
  2009年   151篇
  2008年   166篇
  2007年   183篇
  2006年   157篇
  2005年   155篇
  2004年   146篇
  2003年   97篇
  2002年   115篇
  2001年   125篇
  2000年   105篇
  1999年   83篇
  1998年   58篇
  1997年   57篇
  1996年   54篇
  1995年   44篇
  1994年   51篇
  1993年   49篇
  1992年   34篇
  1991年   25篇
  1990年   35篇
  1989年   27篇
  1988年   19篇
  1987年   28篇
  1986年   25篇
  1985年   33篇
  1984年   50篇
  1983年   19篇
  1982年   30篇
  1981年   25篇
  1980年   21篇
  1979年   20篇
  1978年   15篇
  1977年   14篇
  1976年   9篇
  1975年   8篇
  1973年   16篇
排序方式: 共有4461条查询结果,搜索用时 78 毫秒
61.
Malling-Merton 106 apple rootstocks inoculated with Pratylenchus penetrans, or uninoculated, were grown in a growth chamber in pots of loamy sand maintained at two moisture levels, 0 to -0.4 bar or 0 to -10 bars. Either inoculation or low soil moisture suppressed shoot growth and increased root necrosis. However, the nematode-soil moisture interaction was not significant.  相似文献   
62.
Aim We assessed population differentiation and gene flow across the range of the blue‐footed booby (Sula nebouxii) (1) to test the generality of the hypothesis that tropical seabirds exhibit higher levels of population genetic differentiation than their northern temperate counterparts, and (2) to determine if specialization to cold‐water upwelling systems increases dispersal, and thus gene flow, in blue‐footed boobies compared with other tropical sulids. Location Work was carried out on islands in the eastern tropical Pacific Ocean from Mexico to northern Peru. Methods We collected samples from 173 juvenile blue‐footed boobies from nine colonies spanning their breeding distribution and used molecular markers (540 base pairs of the mitochondrial control region and seven microsatellite loci) to estimate population genetic differentiation and gene flow. Our analyses included classic population genetic estimation of pairwise population differentiation, population growth, isolation by distance, associations between haplotypes and geographic locations, and analysis of molecular variance, as well as Bayesian analyses of gene flow and population differentiation. We compared our results with those for other tropical seabirds that are not specialized to cold‐water upwellings, including brown (Sula leucogaster), red‐footed (S. sula) and masked (S. dactylatra) boobies. Results Blue‐footed boobies exhibited weak global population differentiation at both mitochondrial and nuclear loci compared with all other tropical sulids. We found evidence of high levels of gene flow between colonies within Mexico and between colonies within the southern portion of the range, but reduced gene flow between these regions. We also found evidence for population growth, isolation by distance and weak phylogeographic structure. Main conclusions Tropical seabirds can exhibit weak genetic differentiation across large geographic distances, and blue‐footed boobies exhibit the weakest population differentiation of any tropical sulid studied thus far. The weak population genetic structure that we detected in blue‐footed boobies may be caused by increased dispersal, and subsequently increased gene flow, compared with other sulids. Increased dispersal by blue‐footed boobies may be the result of the selective pressures associated with cold‐water upwelling systems, to which blue‐footed boobies appear specialized. Consideration of foraging environment may be particularly important in future studies of marine biogeography.  相似文献   
63.
The demersal fish and cephalopod communities of the continental shelf and upper slope from 17 to 395m deep were studied during five annual cruises between Cape Agulhas and Port Alfred, South Africa. The cruises showed a consistent pattern of an inshore community (<100m), a shelf community ( c . 90–190m) and a shelf-edge/upper slope fauna (>200m). These groups were identified by dendrograms and multidimensional scaling cluster analysis, which supported on-board observations of catch variation with depth. Although the boundaries are not clearly defined, examination of physical features at the clustered stations suggests that depth, temperature and, to a lesser extent, oxygen concentration are important in the grouping. Occasional, apparently anomalous associations of inshore stations suggested that water temperature and oxygen may over-ride the normal depth distributions of the species groups. This intimates that patterns offish and cephalopod distribution may be dynamic and in part related to the physical parameters of the water body.  相似文献   
64.
65.
66.
The population fluctuation and composition of Xiphinema americanum (sensu stricto) and X. rivesi were studied in a New York apple orchard (only X. americanum present), a Pennsylvania apple orchard (both X. americanum and X. rivesi present), and a Pennsylvania peach orchard (X. americanum, X. rivesi, and X. californicum present). Few clear trends in population fluctuation or composition were observed. The adult female was the predominant stage in most sample periods, and the reproductive period was limited to late spring and early summer. Only a few of the females at any sample period were gravid. All stages were present throughout the year, and all stages overwintered. Eggs in soil were not monitored. In the Pennsylvania apple orchard, X. americanum and X. rivesi were easily separated by morphological characteristics; however, the two species did not display differences in population structure or composition. The predominance of adults, the relatively low reproductive rates, and the association of these species with stable habitats suggest that the life strategies of X. americanum and X. rivesi are K-selected as opposed to r-selected.  相似文献   
67.
A new tribromoiododiphenyl ether ( 1 ) and eight known brominated diphenyl ethers ( 2 – 9 ) were isolated from the MeOH extract of the sponge Arenosclera sp. collected in Vietnam, using repeated open column chromatography and preparative thin layer chromatography. The chemical structure of the new compound 1 was determined by analyses of spectroscopic (1D‐ and 2D‐NMR, and MS) data and by comparison of our data with those reported in the literature. Compounds 1 , 3 , and 8 exhibited strong antibacterial activities against the Gram‐positive bacteria Bacillus subtilis and Staphylococcus aureus and the Gram‐negative bacterium Klebsiella pneumoniae with MIC values ranging from 0.8 to 6.3 μm , while compounds 5 and 7 only displayed activities against Gram‐positive bacteria with MIC values from 0.5 to 3.1 μm . Compound 2 showed activities against the four tested bacteria with MIC values ranging from 0.5 to 6.3 μm .  相似文献   
68.
69.
The idea that interspecific variation in trophic morphology among closely related species effectively permits resource partitioning has driven research on ecological radiation since Darwin first described variation in beak morphology among Geospiza. Marine turtles comprise an ecological radiation in which interspecific differences in trophic morphology have similarly been implicated as a pathway to ecopartition the marine realm, in both extant and extinct species. Because marine turtles are charismatic flagship species of conservation concern, their trophic ecology has been studied intensively using stable isotope analyses to gain insights into habitat use and diet, principally to inform conservation management. This legion of studies provides an unparalleled opportunity to examine ecological partitioning across numerous hierarchical levels that heretofore has not been applied to any other ecological radiation. Our contribution aims to provide a quantitative analysis of interspecific variation and a comprehensive review of intraspecific variation in trophic ecology across different hierarchical levels marshalling insights about realised trophic ecology derived from stable isotopes. We reviewed 113 stable isotope studies, mostly involving single species, and conducted a meta‐analysis of data from adults to elucidate differences in trophic ecology among species. Our study reveals a more intricate hierarchy of ecopartitioning by marine turtles than previously recognised based on trophic morphology and dietary analyses. We found strong statistical support for interspecific partitioning, as well as a continuum of intraspecific trophic sub‐specialisation in most species across several hierarchical levels. This ubiquity of trophic specialisation across many hierarchical levels exposes a far more complex view of trophic ecology and resource‐axis exploitation than suggested by species diversity alone. Not only do species segregate along many widely understood axes such as body size, macrohabitat, and trophic morphology but the general pattern revealed by isotopic studies is one of microhabitat segregation and variation in foraging behaviour within species, within populations, and among individuals. These findings are highly relevant to conservation management because they imply ecological non‐exchangeability, which introduces a new dimension beyond that of genetic stocks which drives current conservation planning. Perhaps the most remarkable finding from our data synthesis is that four of six marine turtle species forage across several trophic levels. This pattern is unlike that seen in other large marine predators, which forage at a single trophic level according to stable isotopes. This finding affirms suggestions that marine turtles are robust sentinels of ocean health and likely stabilise marine food webs. This insight has broader significance for studies of marine food webs and trophic ecology of large marine predators. Beyond insights concerning marine turtle ecology and conservation, our findings also have broader implications for the study of ecological radiations. Particularly, the unrecognised complexity of ecopartitioning beyond that predicted by trophic morphology suggests that this dominant approach in adaptive radiation research likely underestimates the degree of resource overlap and that interspecific disparities in trophic morphology may often over‐predict the degree of realised ecopartitioning. Hence, our findings suggest that stable isotopes can profitably be applied to study other ecological radiations and may reveal trophic variation beyond that reflected by trophic morphology.  相似文献   
70.
Marine annelids in the subfamily Calamyzinae (family Chrysopetalidae) are either symbiotic or free-living forms that have been mainly reported from deep-sea chemosynthetic systems. Symbiotic calamyzines mainly live in the mantle cavity of bivalves in hydrothermal vents or cold seeps, but one species is also found to be inserted into the epidermis of polychaetes. We found a single specimen of calamyzine polychaete on the body surface of Octopus sp. collected in the Sea of Kumano (Japan), which represents the first known record of symbiotic association between polychaetes and octopuses. We described the specimen as Spathochaeta octopodis gen. et sp. nov. Spathochaeta gen. nov. can be discriminated from other genera in Calamyzinae by the presence of spatula-shaped notochaetae and dorsal chaetal lobes. We also provided the phylogenetic position of S. octopodis gen. et sp. nov. within Chrysopetalidae based on four gene markers (COI, 16S, 18S, H3). www.zoobank.org/urn:lsid:zoobank.org:pub:A8FB15C1-31A7-4487-966B-13F10E19A373.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号